THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL |
OF SOCIETY

Non-Metric Multidimensional Scaling in the Analysis of
Neuroanatomical Connection Data and the Organization of
the Primate Cortical Visual System

M. P. Young, J. W. Scannell, M. A. O'Neill, C. C. Hilgetag, G. Burns and C. Blakemore

Phil. Trans. R. Soc. Lond. B 1995 348, 281-308
doi: 10.1098/rsth.1995.0069

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

This journal is © 1995 The Royal Society


http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;348/1325/281&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/348/1325/281.full.pdf
http://rstb.royalsocietypublishing.org/subscriptions
http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Non-metric multidimensional scaling in the analysis of
neuroanatomical connection data and the organization
of the primate cortical visual system
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G. BURNS* anp C. BLAKEMORE

Laboratory of Physiology, Unwersity of Oxford, Parks Road, Oxford 0X1 3PT, U.K.

SUMMARY

Neuroanatomists have established that the various gross structures of the brain are divided into a large
number of different processing regions and have catalogued a large number of connections between these
regions. The connectional data derived from neuroanatomical studies are complex, and reliable
conclusions about the organization of brain systems cannot be drawn from considering them without some
supporting analysis. Recognition of this problem has recently led to the application of a variety of
techniques to the analysis of connection data. One of the techniques that we previously employed, non-
metric multidimensional scaling (NMDs), appears to have revealed important aspects of the organization
of the central nervous system, such as the gross organization of the whole cortical network in two species.
We present here a detailed treatment of methodological aspects of the application of NMDs to connection
data. We first examine in detail the particular properties of neuroanatomical connection data. Second,
we consider the details of NMDs and discuss the propriety of different possible NMps approaches. Third, we
present results of the analyses of connection data from the primate visual system, and discuss their
interpretation. Fourth, we study independent analyses of the organization of the visual system, and
examine the relation between the results of these analyses and those from nMps. Fifth, we investigate
quantitatively the performance of a number of data transformation and conditioning procedures, as well
as tied and untied NMDs analysis of untransformed low-level data, to determine how well NMDS can recover
known metric parameters from artificial data. We then re-analyse real connectivity data with the most
successful methods at removing the effects of sparsity, to ensure that this aspect of data structure does not
obscure others. Finally, we summarize the evidence on the connectional organization of the primate visual
system, and discuss the reliability of NMDs analyses of neuroanatomical connection data.
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1. INTRODUCTION

Structures in the central nervous system (cns) typically
make many connections with other structures. The
primary visual cortex, V1, for example, exchanges
substantial numbers of projection fibres with at least 60
other cortical and subcortical regions. This profuse
connectivity is shared by most other structures in the
ons so that the brain, at one level, can be thought of as
a complex wiring network. Considering only the
cerebral cortical part of this network, there are
approximately 1000 reported ipsilateral cortico-cor-
tical connections areas in the cat and monkey (Scannell
& Young 1993; Young 1993; Young et al. 1995). The
complexity of even this part of the central nervous
network is too great to allow conclusions about its
organization to be drawn by unaided intuition. It has
become an article of faith for many researchers,

* Present address: Neural Systems Group, Department of Psy-
chology, Ridley Building, Newcastle upon Tyne, NE1 7RU, U.K.

however, that connectivity data hold an important key
to unravelling principles of brain organization
(Rockland & Pandya 1979; Maunsell & Van Essen
1986; Livingston & Hubel 1988; Felleman & Van
Essen 1991; Young 1992). The complexity of the data,
and the promise that they hold for providing insight
into the organization of central nervous processing,
have encouraged the development and application of
data analytic methods for treating connection data
systematically. Several methods have been applied
recently to the problem of untangling the cns’s
connectivity,  including  hierarchical  analysis
(Rockland & Pandya 1979; Maunsell & Van Essen
1986; Felleman & Van Essen 1991), cluster analysis
(Musil & Olson 1991), hodological analysis (Nicolelis
et al. 1990), and non-metric multidimensional scaling
(Shepard 1962, 1980; Young 1992, 1993; Scannell &
Young 1993).

The latter approach using NMps has been applied
more widely than any other method. Every major
sensory system in the cat and monkey cortex, and the
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gross cortical organization of each animal, have been
analysed in this way (Young 1992, 1993; Scannell &
Young 1993; Young et al. 1995). In this approach it is
considered that connection data indicate the
proximities beween brain structures in a notional high-
dimensional space, and NMDs is used to reduce the
number of dimensions of the space to make the
configuration defined by the connections more under-
standable. The results of these analyses indicate that all
the major cortical sensory systems in cats and monkeys
are hierarchical, serially ordered structures. In ad-
dition, the nMDs analyses of all the available cortical
connection data seem to show that both the monkey
and cat cortical networks are divided into three major
hierarchically organized sensory systems and a fourth
system composed of prefrontal and limbic structures,
which is connectionally distant from the sensory—motor
periphery (Young 1992, 1993; Scannell & Young
1993; Young et al. 1995). The analyses also appear to
show that the primate visual system is clearly divided
into two gross streams, unlike any other central sensory
system (Young 1992).

These findings are potentially significant and it is
important, therefore, to know whether the results of the
analyses are reliable. We have not previously treated
methodological aspects of the application of NMDs to
neuroanatomical connection data in detail. We do so
here by:

1. Examining the particular properties of neuro-
natomical connection data, and determining the types
of underlying structure that are consistent with the
data’s simple statistics.

2. Considering the details of NMps and discussing the
propriety of different possible NMDs approaches to data
with these particular properties.

3. Presenting detailed results of the analyses of
connection data from the primate visual system, and
discussing their interpretation.

4. Turning to independent analyses of the organi-
zation of the visual system, and examining the relation
between the results of these analyses and those from
NMDS.

5. Investigating quantitatively the performance of a
number of data transformation and conditioning
procedures, as well as tied and untied NMDs analysis of
untransformed low-level data, to determine how well
NMDS can recover known metric parameters from
artificial data. We then re-analyse real connectivity
data with the most successful methods to ensure that
the data’s sparsity has not obscured important aspects
of data structure.

6. Summarizing all the evidence on the connectional
organization of the primate visual system, and discus-
sing these facts in the context of the conclusions derived
from application of NMDs to the primate visual system
data (Young 1992).

2. CHARACTERISTICS OF THE DATA

Any approach to data analysis properly begins by
examining the characteristics of the data that are to be
analysed. So what are the characteristics of connection
data?

Phil. Trans. R. Soc. Lond. B (1995)
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Many different neuroanatomical methods have been
employed to reveal connections between brain struc-
tures. These methods have included the dissection of
cerebral white matter (Vieussens 1685 ; Dejerine 1895),
strychnine neuronography (Pribram & MacLean
1953), and the Nauta-Gygax (Whitlock & Nauta
1956) and Fink-Heimer methods (Turner et al. 1980)
of tracing neuronal degeneration after lesion. More
recently, the active transport of tracer chemicals by
neurons from a point of injection either anterogradely
(to the synaptic targets of the neurons whose cell bodies
lie at the injection site), or retrogradely (to the cell
bodies of neurons whose axonal processes terminate in
the injection site) has become the method of choice.
Actively transported methods include autoradio-
graphy, often using tritiated amino acids (Amaral &
Price 1984; Ungerleider & Desimone 1986), horse-
radish peroxidase (Aggleton et al. 1980), carbocyanine
dyes (Vidalsanz et al. 1988), other fluorescent dyes (De
Yoe & Van Essen 1985), Phaseolus leucoagglutinin
(Gerfen & Sawchenko 1984), biocytin (King et al.
1989), and fluorescent microbeads (Katz & Iarovici
1990).

All the modern neuroanatomical methods that yield
results bearing on the connections between brain
structures involve sectioning or flattening the brain
and visualizing the distribution of transported label.
These methods thus identify the connections, and the
direction of connections, between different brain
regions. The brains of a number of mammals have
been extensively investigated by these means. Two of
the best studied mammals, the cat and the Macaque
monkey, have cerebral cortices that contain about 70
distinct areas linked by about 1000 reported connec-
tions (Scannell & Young 1993; Young 1993). Many of
these areas possess marked internal structure, in which
their subcompartments have distinct patterns of con-
nectivity (Felleman & Van Essen 1991), and many
areas lying in what used to be termed ‘association
cortex’ are not clearly demarkated from their neigh-
bours (Colby & DuHamel 1991). Some structures are
more widely connected than others (the amygdala in
the macaque, for example) but the ‘average’ cortical
area sends or receives nerve fibres from about 259, of
the ipsilateral cortical areas, and does not send or
receive an appreciable number of fibres from the
remaining 759, of areas (Felleman & Van Essen 1991
Scannell & Young 1993; Young 1993). The strength or
density of the connections varies greatly. Large robust
connections (such as the projection from primary to
secondary visual areas) may consist of many tens of
millions of fibres whereas the weaker, but still
identified, connections may contain many times fewer
fibres (Olson & Musil 1992). Areas that are considered
by neuroanatomists not to be connected may exchange
a few fibres, sometimes revealed as ‘background
labelling’, but the number of fibres exchanged is
typically many orders of magnitude lower than for
interactions reported as connections.

The ideal type of connection data for analysing the
area-to-area pattern of connectivity would concern the
number of nerve fibres linking any two areas. This kind
of data would perfectly capture the relations between
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Figure 1. Quantitative distribution of neuroanatomical connection strengths. This distribution was derived from data
from 26 injections into areas of cortex and was compiled from five quantitative neuroanatomical studies (see text).
Cases in which there is no significant tracer transport are the most frequent, a result that reflects the sparsity of
connection at all levels of the central nervous system. The quantitative distribution of connection strength that is
approximated here provides important constraints on the possible structures that can be implemented in cortical

systems.

brain regions that are defined by their patterns of
connectivity, and would provide a metric proximity
measure. It is possible to estimate the absolute number
of nerve cells in the optic nerve (10%), or sending
projections from V1 to V2 (25 x 10%; Van Essen & De
Yoe 1995), but there are not enough data to reveal the
number of nerve cells involved for the vast majority of
connections that are known to exist. However, within
a particular anatomical study it is sometimes possible
to estimate the relative numbers of connections passing,
for example, into one area in which an injection has
been made from several other areas. These data often
take the form of the percentage of the total number of
labelled cells found in each area.

(a) The distribution of projections of different
strength

Figure 1 shows the distribution of neuroanatomical
connection strengths derived from 26 injections into six
areas of cortex. The data were taken from five studies
that presented information on the percentage of
labelled neurons in different areas following injection
of the retrograde tracers Nuclear Yellow and Bisben-
zimide (Olson & Jeffers 1987; Olson & Lawler 1987,
Bowman & Olson 1988; Musil & Olson 1988a,4; Olson
& Musil 1992). The studies systematically scanned
sections for labelled neurons and expressed the number
of neurons found in each area as a percentage of the
total labelled neurons in the hemisphere ipsilateral to
the injection site and outside the injected cortical area.
The number of neurons counted per hemisphere
ranged from 1000 to 10000, and the percentage of
labelled neurons per area ranged from 60-0 9.

Figure 1 represents an estimate of the average
frequency distribution of retrogradely labelled neurons
after injection in a cortical area, and may be
interpreted as an estimate of the distribution of relative
connectional proximity between cortical areas. It is

Phil. Trans. R. Soc. Lond. B (1995)

clearly apparent that the most frequent connectional
proximity is zero. This reflects the fact that the cortex
is remarkably sparsely connected. There are about 10*°
neurons in a mammalian cortex, each of which have
about 1000 connections with other neurons. These
values mean that, at the neuronal level, the probability
that any two randomly selected neurons are connected
is about one hundred thousandth of one percent.
Figure 1 represents the aggregate level of connections
between brain areas and shows that, even at this level,
connectivity is sparse with the majority of possible
connections (often around 709,) being absent. Figure
1 also illustrates that strong connections are few in
number, and may lie in a region of the distribution that
is descending asymptotically to a frequency of zero.
The relative frequency of different connectional prox-
imities provides a clue to the structure or shape that
reflects the cortical areas’ underlying geometry. Figure
I indicates that the connectional structure contains a
high proportion of long distances (zero connectional
proximities) with few medium or short distances. This
is important information, as it is diagnostic of a family
of shapes to which the underlying configurations of
neural systems belong (see §2¢).

(b) Connection matrices

Analysis of the area-to-area pattern of connectivity
in the cortex requires a connection matrix that
summarizes the connections between an interestingly
large set of brain regions. Such a matrix must be
constructed from many separate reports of connectivity
from many different laboratories using many different
anatomical methods. Individual anatomical studies
are seldom sufficient. It cannot reasonably be assumed
that the estimates of the relative proportions of labelled
cells, discussed above, hold across different studies.
There are in any case, too few quantitative studies of
this nature to define a proximity matrix at this high
level of measurement.


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

284 M. P. Young and others MDS and the structure of the primate visual system

@ ®)
17 T
08 ¢+
0.6 1
04 1
02t
aa :
p
> > ¢
- ©
@) - 1
~R
[_u U 0.8 1
E g 06 |
- 04 1
<
08
= 02 ¢
a -
oS & 0 . — ,
m% 0 K
Oz
=<
T
oy

)]

® (O]

08 1
0.6 1

04 1

SOCIETY

02 ¢

THE ROYAL

0 et + + + + + + ———t + + et + +
1 5 9 13 17 21 25 29 33 37 1 5 9 13 17 21 25 29 33 37
Figure 2. Distributions of distances that are associated with different shapes. The figure shows the frequency of

interpoint distances between the points of eight example Euclidean structures. The x-axis corresponds to distances
between points in the arbitrarily sized structures. The structures are (a) a Gaussian patch, () a disk region within
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Quantitative connection data are not therefore
sufficiently widely available to define an interval
connection matrix (see Coombs (1964) for an ex-
position of an influential theory of measurement).
There is, however, a good deal of information in the
neuroanatomical literature concerning whether par-
ticular projections are strong, moderate or sparse,
particularly in the cat. These classifications of con-
nection density are assumed to correspond to neuro-
anatomists’ judicious divisions of the distributions of
the density of labelled cells that they see in their
sections. If it is assumed that the differences between
different studies are not so gross as to cause one study’s
strong connections to be equivalent to another study’s
sparse ones, then it is possible to summarize the current
state of knowledge of patterns of cortical connectivity
in connection matrices with an ordinal ranking of
connection strength. Scannell & Young (1993) used
this approach for cat cortical connectivity and ranked
the connections as 3 (strong), 2 (intermediate), 1
(sparse) or O (absent or unreported). When reflected
about the leading diagonal of the connection matrix,
this provided a 7 point rating scale (0-6) describing the
connectional proximity of areas of the cat brain.

Information on the strength of connection between
structures is not available for every reported con-
nection, however. In many cases, but particularly in
the case of the monkey, only the fact of connection (or
the fact of the lack of a connection) is reported. Young
(1992, 1993) summarized the reported data on monkey
cortical connectivity by giving interactions between
areas a rank of 2 if the areas exchanged reciprocal
connections, 1 if the areas were connected in only one
direction, or 0 if connections between the areas were
reported absent or no connections were reported,
giving a 3 point rating scale for connectional proximity.

Non-zero entries in either the 3 point or 7 point
connection matrices correspond to a range of ‘real’
metric proximities. This is because the non-zero entries
are estimates of the rank order of the strength of
connection between areas, which in turn depend on the
number of nerve fibres linking any two areas. The
number of fibres passing between areas will differ, even
when two connections are assigned the same value in
the connection rating scale. There is, however, no basis
for estimating these finer differences in any analytical
procedure. The only reliable means of discriminating
these small distinctions in proximity is to undertake
further empirical neuroanatomical work. For this
reason, we consider that no attempt should be made to
assign different values to entries with the same rank.
This has important consequences for the appropriate
analytical strategy (see §35).

In contrast to the reported connections, there is no
supportable sense in which the zero entries correspond
to a range of metric proximities. The zero entries do
not correspond to a range of real metric proximities
because the non-existence of a connection is not a

graded quality. It is meaningless to say of one absent
connection that it is more or less absent than another
absent connection. This is another way of saying that
should there be any differences between the back-
ground labelling observed for two reported non-
connections, then these differences should not be
respected. The number of fibres exchanged in such
background labelling cases is many orders of mag-
nitude lower than for bona fide connections, and any
differences in background label are not considered
meaningful by the neuroanatomists who report them.
Zero entries corresponding to possible connections that
have been confirmed absent in anatomical studies
therefore signal the same low proximity between the
areas to which they relate.

Some of the zeros in connection matrices correspond
to possible connections whose existence or absence has
not been explicitly reported. Should this subset of the
zero entries be treated in a different way to those that
correspond to possible connections that have been
confirmed absent? It might be tempting to perform a
kind of missing data estimation on these entries,
perhaps by assigning to particular examples of these
entries a probability that the particular possible
connection exists. We note, however, that this ap-
proach would entail second-guessing neuroanatomy
and neuroanatomists. Connectional neuroanatomy is
not predictable. We therefore regard any such missing
data estimation procedure as dangerously likely to
mislead. We consider that a better approach is to
analyse a ‘control’ data matrix, constructed under the
assumption that unreported connections all exist (the
grossest possible perturbation of the data), to see the
extent to which the uncertainties in the connection
data could give rise to different conclusions as more
data are reported.

Connection data thus present themselves as sparse
similarity matrices, in which the non-zero entries
specify that the particular connection is estimated to
involve a particular range of connection density and in
which the zero entries indicate that all areas not
exchanging connections are exactly as far apart as each
other. These characteristics of connection data, some of
which are unusual, have important consequences for
choosing appropriate data analytic methods (see §35),
and for interpreting NMps configurations derived from
neuroanatomical connection data. Before proceeding
to methods of data analysis, we return to the relative
frequency of different connectional proximities from
quantitative neuroanatomical studies, and consider
further the consequences of this data distribution.

(¢) The underlying connectional ‘shapes’ of neural
systems

Figure 1 indicated that the connectional data
contain a high proportion of zero connectional prox-
imities, with few medium or high proximities. This

which points are uniformly but randomly distributed (¢) a ring, (d) a straight line, (¢) a regular hexagonal grid, (f)
three Gaussian patches whose centres are placed at the three vertices of an equilateral triangle, (g) two rings in a

figure-of-eight configuration and (k) parallel straight lines.

Phil. Trans. R. Soc. Lond. B (1995)
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Figure 3. Distributions of relative proximities for points lying randomly within a disk, and in successively more ring-
like structures, as an empty region is gradually expanded in the centre of the space. In the limit case, depicted as the
rearmost of the distributions, where the points are distributed on the circumference of a circle, the distribution of
relative proximity between points is the first differential of the inverse of the cosine of an angle between the circle’s

diameter and a chord passing between 0° and 90 °. [- (1

- x%)M2]. All distributions are shown as transformed by

subtracting from all distances the maximum distance present in the structure, and then expressing each proximity

value as a fraction of all the proximities present in the row.

information provides important constraints on the
family of shapes which the underlying configurations of
neural systems can occupy. Consider that if points are
arranged in a space and the distances between them
measured, the distribution of distances between the
points depends on the shape of the arrangement of
points. Figure 2 illustrates some of the different
distributions of distances that are associated with
different shapes. The figure shows the relative frequency
of interpoint proximities between the points of eight
example Euclidean structures. The structures are:
(1) a Gaussian patch;(ii) a disk region within which
points are uniformly but randomly distributed; (iii) a
ring; (iv) a straight line; (v) a regular hexagonal grid;
(vi) three Gaussian patches whose centres are placed at
the three vertices of an equilateral triangle; (vii) two
rings in a figure-of-eight configuration; and (viii)
parallel straight lines. The disk, Gaussian, and line
contain relatively high frequencies of medium or high
proximities between points. The ring contains rela-
tively high frequencies of low proximities. The three
Gaussian patches shape shows a bimodal distribution of
distances, corresponding to inter- and intra-patch dis-
tances. The two rings shape shows a sharp peak (at the

Phil. Trans. R. Soc. Lond. B (1995)

distance corresponding to the diameter of the rings),
where proximities greater than this peak correspond
to intra-ring distances, and proximities lower than this
peak correspond to inter-ring distances. The parallel
lines shape also shows a sharp peak, whose position
corresponds to the line spacing. The regular hexagonal
grid shows several peaks at medium distances. The
positions of the peaks correspond to harmonics of the
internode distance in the grid. It is apparent that the
frequency distributions of distances or proximities can
alone give an important indication of the underlying
organization of the data structure. Any structure, for
example, with a large proportion of long distances or
low proximities cannot be discoid, Gaussian, figure-of-
eight, or involve extended straight lines or regular grid-
like organization.

It is instructive to compare these test distributions
and shapes directly with the distribution for neuro-
anatomical connection data presented in figure 1. It is
necessary first to perform a simple transform on the test
data to make this direct comparison. The quantitative
neuroanatomical connection strengths in figure 1 were
given as a percentage of labelled cells per hemisphere.
This corresponds to the fraction of the total proximity
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relative frequency

Figure 4. Distributions of relative proximity for disk, ring and quantitative neuroanatomical data. The
neuroanatomical distribution is well approximated by the ring distribution, but bears no relation to the distribution
for disk data. These correspondences are given quantitative statistical expression in the text.

that each connection represents: if the connection to
one area contains 609%,, no other area can contain
more than 409, of the labelled neurons. For direct
comparison, it is necessary to convert the metric
distances between the points of the test structures into
the same form. We therefore converted the metric
distance matrices into proximity matrices by sub-
tracting from all distances the maximum distance
present in the structure, and then expressing each
proximity value as a fraction of all the proximities
present in the row. We paid particular attention to ring
and disk test structures because both have been
suggested as the underlying connectional shape of
particular neural systems (Young 1992; Goodhill ¢t al.
1994).

Figure 3 summarizes the distributions of relative
proximities for points lying randomly within a disk,
and in successively more ring-like structures as an
empty region is gradually expanded in the centre of the
space. Structures in which the points are distributed
uniformly within a circular region possess a unimodal
distribution of relative proximity whose peak is at
middle proximities. As the proportion of the central
region from which points are abolished increases, i.e. as
the configuration becomes an increasingly thin ring
structure the structure comes to contain more low,
fewer high, and many fewer medium proximities. In
the limit case, where the points are distributed on the
circumference of a circle, the distribution of relative
proximity between points is the first differential of the
inverse of the cosine of an angle between the circle’s
diameter and a chord passing between 0-90°, trans-
formed in the manner described above.

Phil. Trans. R. Soc. Lond. B (1995)

The distribution of neuroanatomical connection
strength is replotted in figure 4 alongside representative
distributions from disk and ring structures to aid direct
comparison. The distribution of proximities in the
quantitative neuroanatomical data is diagnostic of a
ring or horseshoe structure. The high proportion of low
proximities in the neuroanatomical connection data
compels the conclusion that the underlying shape of
neural systems cannot be that of a uniform disk (cf.
Goodhill et al. 1994). These relations between the
proximities in anatomical data and those of the test
structures can be rendered in quantitative terms by
regressing the one on the others. The relation between
the connection data’s distribution and that of the disk
was not statistically significant (r* = 0.09, p =0.2),
while the relation with that of the ring was statistically
significant (r* = 0.88, p = 0.0001).

Thus, a consideration of the quantitative charac-
teristics of anatomical connection data, before any
consideration of detailed methods of data analysis,
indicates that the Euclidean configuration of points
that closely approximates the connection data for any
cortical neural system has an annular or horseshoe
shape. Similar considerations apply in the case of
dimensions greater than two, as we shall report
elsewhere. This conclusion does not bear on the issue of
where particular brain structures should lie in this
manifold. It therefore says nothing about whether
connection data imply a structure with a number of
streams or only one, or about the ordering of brain
areas relative to one another. To address these
questions, the patterns of connectivity embodied in the
connectional constraints themselves require to be
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optimized, and so we turn to NMDs, a procedure that
performs precisely this operation.

3. NON-METRIC MULTIDIMENSIONAL
SCALING

~MDps is a method of data analysis that constructs a
spatial representation of a set of elements on the basis
of a table of ‘proximities’ that define the relations
between the elements. Historically, Nmps is related to a
number of earlier statistical procedures, often referred
to as principal coordinates analysis or metric multi-
dimensional scaling (Torgerson 1952). These pro-
cedures were designed to take metric distance measures
and to produce their corresponding metric coordinates.
Metric methods of this kind are limited in application
due to the assumption that the proximity data to be
analysed are metric in character (Shepard 1980). This
restriction invited the development of several varieties
of non-metric multidimensional scaling, in which the
intention was to overcome the problems of the metric
approach either by estimating the form of the function
that mapped the proximities in the input onto the
Euclidean distances in the output (Shepard 1958), or
by restricting the goal of the analysis to finding the
ordering of the elements on orthogonal axes of a space
(Coombs 1964).

The nMpDs algorithms that are now widely used arose
from a distinctive approach based on ‘analysis of
proximities’ (Shepard 1980). Here, an iterative pro-
cedure is used to adjust the positions of points in the
output space until the ordering of the distances between
the points is as close as possible to the reverse ordering
of the corresponding proximities (Shepard 1962). The
sense in which distances and proximities were ‘as close
as possible’ found an explicit form in a ‘sum of squares’
measure of departure from a perfect monotonic relation
between them called sTrREss (Kruskal 19644). This
development brought the approach to NMDs arising
from analysis of proximities almost to its current state
of development by allowing the optimization of non-
metric constraints by standard gradient descent
methods.

(a) Multivariate descriptions of a set of elements
Sfrom the proximities between them

nMps pursues the following procedure to find a
metric configuration of z points that optimally repre-
sents the non-metric constraints in an nXn input
matrix. The procedure begins by placing an initial
configuration of n points in a space with K specified
dimensions, where K is an interpretably low number.
This placement may be made either at random, or by
the application of principal coordinates analysis. A set
of numbers, termed disparities, d;;, are defined that
enjoy a monotonic relation with the input proximities
s> while also fitting the distances in the configuration
d;. The program then iterates toward an optimal
stationary configuration.

Each iteration involves three elements. First, the best
fitting sequence of disparities d; is determined by
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monotone regression (Kruskal 19644). Second, the
nx K partial derivatives of sTREss (s) implied by the
current coordinates of the points are evaluated by

S = [Z (dt~—6ﬁ)2]/2dij2,
ij %)

where the distances d,; are normally Euclidean dis-
tances in K dimensions, given by

k B
' = [ )Y (xilc_lec>2:| )
k=1
although other distance measures, corresponding to
non-Euclidean spaces, can be chosen (Kruskal 19645).
Third, the current coordinates are moved in the
direction of negative gradient, calculated by

new old

X = Xy —a(8S/dxy,)

in which « is a step-size factor (Shepard 1980). The
iterations of the procedure terminate either when the
sTREss gradient is sufficiently small as to indicate that
the convergence on a solution is near stationary, or
when a criterion number of iterations have been
performed, and the resulting parameters are written as
output.

More recently, a very efficient method for per-
forming NMDs has been described (de Leeuw et al.
1976), which its originators call aLscaL. This method
uses ‘alternating least squares’, an algorithm that is
necessarily convergent, quick, and relatively free from
the problems of stalling in local minima (Takane et al.
1977). We have preferred to use this algorithm, but for
computational efficiency the program uses a different
objective cost function, called sSTREss:

1

2

8§ = [E (dif—a,.,.2>2/zdﬁ4] .

ig 0

It is important to note that large disparities, that is,
those related to the zero proximities in the case of
connection data, are emphasized over smaller dis-
parities by both sTrEss and ssTrEss. This is because the
costs of misatches between distances and disparities are
calculated in equations that include them as a
quadratic term for sTREss, and as a quartic term for
ssTRESS. Other procedures that emphasize local mono-
tonicity rather than global monotonicity have been
described (e.g. ParRaMAP, Shepard & Carroll 1969),
but the algorithms that implement these methods are
not yet capable of dealing reliably with data at the
level of measurement represented by connection data.
A further aspect of the NMDs procedure concerns the
way the algorithm deals with similarities that possess
the same value. There are two alternatives in this
circumstance, namely the primary or untied approach,
and the secondary or tied approach. The difference
between these two approaches lies in the different
constraints under which the disparities d,; corre-
sponding to tied similarities are placed. In the primary,
untied, approach, when the s;; and s, are equal, their
corresponding disparities d,; and d,, are not constrained
beyond requiring that whenever s;; < s, , 6;; < 0, . In
this case, the terms (d;—0,)® and (d,,—4,,)® are
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allowed to be zero (not to contribute to the cost),
unless they are prevented from being so by other con-
straints. Hence non-equivalence of disparities that cor-
respond to the same similarity value is not penalized
in the optimization procedure, and the distances in
the output configuration that correspond to tied
similarities are allowed to vary between limits pre-
scribed by the other similarity levels (Kruskal 196454).
This may be summarized by

Whenever s,; < s,,, then J,; £ d,,.

In the secondary, tied, approach, when the disparities
5; and s, are equal, their corresponding distances
should also be equal. In this case, the terms (d”—4,,)*
and (d,;—9d,,)? are not allowed to be zero (and so
contribute to the cost function if 47 and 4* are
unequal). Hence, distances in the output configuration
that correspond to tied similarities are penalized when
they are not also equivalent (Kruskal 19645). This can
be summarized by the constraints

Whenever s; < s, then d;; = &,,.
Whenever s;; = s,, then §;; = 0.

The choice of whether to follow the tied or untied
approach is often governed by the question of whether
the distribution that underlies the data is continuous or
discrete (Takane et al. 1977). This choice is one of those
that must be made in selecting the appropriate NMDs
approach to neuroanatomical data.

(b) What is the appropriate Nnmps approach to
neuroanatomical connection data?

We described aspects of the characteristics of the
connection data in §2. The task of this section is to
decide the appropriate parameters for NMDs analysis of
data with these properties. Because connection data
matrices always contain many entries with the same
value, the first decision concerns whether the tied or
untied approach in NMps should be taken.

Quantitative neuroanatomical studies, such as those
that informed the discussion in §2a, suggest that
connection strengths are distributed in a continuous
manner (see figure 1). The rating scales in connection
matrices, however, represent this smooth dispersion by
discrete values. The continuous distribution of con-
nection density is cut into discrete regions, each
signalled by a discrete value, by placing thresholds. To
capture accurately the underlying structure of the data
these cusps between regions of the distribution must be
placed intelligently, and NMDs must then reconstruct
the proximities to which the discrete values correspond.
The first of these requirements will be met if neuro-
anatomists’ classifications of the labelling in their
sections are judicious (see §24). The second will be met
if Nmps faithfully reconstructs the proximities signalled
by the discrete values in the connection matrix.

These refections might imply that the primary,
untied, approach should be taken in NMDs analysis of
connection data. Two overriding considerations, how-
ever, council against this choice. First, as discussed in
§2b, while the non-zero values in connection matrices
certainly signify a range of proximities related to the
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number of nerve fibres linking any two areas, there is
no basis for estimating these finer differences in a
subsequent analysis. Resolution of these small distinc-
tions in proximity requires further empirical neuro-
anatomical work. The analysis should consequently be
limited to reconstructing the parameters of the data as
presently given, rather than performing what would
amount to a missing data estimation. For this reason,
we consider that attempts to assign different values to
entries with the same rank should be treated very
cautiously, and therefore that the tied approach is the
more appropriate.

Second, we indicated in §3a that NMDs lays emphasis
on the large disparities carried by low proximities in
the connection matrix. This means that the zero entries
are of particular salience to the stationary con-
figuration which will be found by Nmps. There is no
interpretable sense in which the zero entries correspond
to a range of proximities lying in some continuous
distribution. Once classified by neuroanatomists as
absent, it is not meaningful to say of two absent
connections that the one is less absent than the other.
The zero entries are therefore fundamentally unlike the
non-zero entries, in that the part of the distribution of
connection strength from which they derive does not
possess an underlying continuum. Those zeros in
connection matrices that correspond to possible con-
nections whose absence has not been explicitly
reported, however, could be considered to be drawn
from a continuous distribution, where the continuity
lies in different probabilities that particular possible
connections exist. With reference to the above, an
attempt to assign different values to unreported
connections would be to perform a kind of missing data
estimation on these entries, when there is no basis for
such estimation. Connectional neuroanatomy is not
predictable, and any such missing data estimation
procedure is likely to be misleading. The emphasis that
NMDs lays on the zero proximities, and the unusual
property that all zero proximities should be reflected in
distances of the same length, suggest that the tied
approach is the appropriate one for these data.

Another choice concerns the geometry of the output
space. Choosing non-Euclidean output spaces has been
suggested to us as a means of mitigating the solutions’
emphasis on larger disparities. We feel, however, that
only Euclidean solution spaces will be readily in-
terpretable by the human visual system, which is
adapted by experience to a Euclidean three-space. We
therefore consider Euclidean output spaces to be the
most appropriate, on the grounds of interpretability
(see Shepard 1980).

4. APPLICATION OF NMDS TO THE
PRIMATE VISUAL SYSTEM

We have examined a matrix of connections between
areas of the primate cortical visual system (Young
1992). The constitution of the matrix was derived from
a collation of data presented by Felleman & Van Essen
(1991), with a number of minor changes. We did not
include areas MIP and MDP in the matrix because of
lack of connection data, and because of some un-
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Figure 5. The structure derived from tied NMDs analysis of the visual system matrix. The features of this structure are
described in the text, and in Young (1992). Briefly, the structure implies that the visual system is divided into two
gross streams (both of which are hierarchically organized) and which reconverge in areas of the temporal and frontal

lobes.

certainty about the relationship between these areas
and area 7m of Cavada & Goldman-Rakic (1989). We
assigned those connections of the posterior infero-
temporal cortex (PIT) whose origins were not differen-
tiated into the ventral and dorsal parts of PIT to both
these subregions. This assigned connections with
MSTD, FST, FEF and area 46 to both PITV and
PITD. A second set of assignments was made for
connections listed as related to CIT. This assigned
connections with STPp, TH, FEF and area 46 to both
CITV and CITD. A third set of assignments was made
for connections listed as related to STP, so that STPp
and STPa acquired connections with area 7a. Finally,
the sparse connection between MT and area 46 (Barbas
1988) is credited with existence, despite its not having
been reported by Ungerleider & Desimone (1986).
The resulting matrix was reflected about its leading
diagonal to derive a lower-triangular matrix with
entries taking the values 2 (reciprocal), 1 (uni-
directional), and 0 (non-existent or unreported) (see
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§2b), and has been presented in Young (1992). Because
the task of this article is to address methodological
aspects of the application of NMDs to connection data,
we consider here exactly the same matrix of con-
nections, rather than reporting analysis of matrices
that are larger, or which contain more recent ana-
tomical data.

After our discussion of the appropriate parameters
for NMDs analysis of neuroanatomical connection data
in §34, we performed the analysis with tied similarities
remaining tied, and with a Euclidean output space.
The analysis was performed by program arscar (de
Leeuw et al. 1976; Takane et al. 1977). We review the
characteristics of the resulting configuration (see
Young 1992 and figure 5).

The points of the configuration are concentrated
into an annular region of the output space, as expected
from consideration of the quantitative aspects of
connection data, in §2a,c. The annularity of the solution
follows from the large proportion of non-connections in
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the connection matrix and the underlying quantitative
distribution of connection strength, and it is en-
couraging that the shape of the solution is among the
candidate manifolds for which the quantitative dis-
tribution of neuroanatomical connection strength is
diagnostic (§2¢). Had the shape of the solution been
that of a uniformly filled disk, for example, we would
have cause for concern, because such a configuration
would not be among the possible structures permitted
by the quantitative distribution of connection strength.

The dimensions of the solution correspond approxi-
mately to the anterior—posterior and to the dorso—
ventral (top to bottom) distribution of the areas
spatially within the brain. Parietal cortical areas, for
example, are placed toward the top of the diagram,
whereas inferotemporal cortical areas are placed
toward the bottom. If we remember that information
on area-to-area connectivity was the only type of
information that entered the analysis — no information
regarding the disposition of the areas on the cortical
sheet was included — this aspect of the configuration
implies that the spatial location of an area well predicts
the areas to which that area is likely to be connected
and therefore, that nearby areas tend to exchange
connections with one another. This offers some support
to the idea that a constraint on the organization of the
brain may be the requirement that neuronal wiring be
kept to a minimum (Cowey 1979; Mitchison 1991;
Young 1992; Cherniak 1994).

Primary visual cortex (V1) is located at the far left
of figure 5. Signals are relayed from V1 to a group of
prestriate areas including V2, V3, VP, V4t, V3A, MT,
and, surprisingly because it is a posterior parietal area,
PIP. MT and V3A are placed further from the sensory
periphery than other members of this group. MT is
further distinguished from its topological neighbours
by its (sparse) projection to frontal cortex area 46 and
its (less sparse) projection to the frontal eye fields
(FEF) (see Felleman & Van Essen 1991). Every area in
the prestriate group projects to a cluster of areas
consisting of areas of the posterior parietal cortex and
the caudal superior temporal sulcus, namely FST,
MSTD, MSTL, VIP, PO, LIP and DP. These areas
then project to FEF, parietal area 7a, the posterior
region of the superior temporal polysensory area
(STPp), and to area 46 and anterior STP (STPa).

Beginning at V1 again, but now concentrating on
the lower part of the configuration, V1 projects to V4,
while V2 and VP project to VOT. Signals are relayed
from V4 and VOT into the areas of the inferotemporal
(IT) cortex. The IT areas appear to be serially
organized, with more anterior areas generally being
placed successively further toward the right of the
diagram, away from the sensory periphery. The higher-
order areas of the I'T cortex are associated with areas
TF and TH of the parahippocampal cortex. The
topologically higher-order IT areas project to STPa
and to area 46.

It is a feature of the structure that relatively few
connections pass across the central region between the
parietal and inferotemporal groupings of areas, by
comparison to the number that pass around the rim.
Hence, there appear to be two distinct sets of areas in
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the cortical visual system that are much more profusely
interconnected within groupings than between them
(see §5a). These two sets of areas correspond straight-
forwardly to the dorsal and ventral streams of
processing, which were proposed most clearly by
Ungerleider & Mishkin (1982) on the basis of the
behavioural effects of cortical lesions (see §5d). The
higher-order areas of both streams project to STPa and
to area 46. This feature of the structure implies that
there is reconvergence of processed visual information
in the rostral parts of the temporal lobe and in the
frontal lobe (see Perrett & Oram 1995).

These aspects of the results of NMDs analysis of the
primate cortical visual system indicate that, at the
aggregate level of connections between gross brain
areas, four principles underlie its organization: (i)
neighbouring areas tend to exchange connections; (ii)
it is dichotomized into two streams; (iii) both streams
are broadly hierarchical; and (iv) the streams
reconverge in area 46 and STPa (Young 1992).

(a) Control results

In this section we report details of a variety of further
analyses to assess the reliability of the above con-
clusions. The first ‘control’ analysis concerns the
possible effects of changing the status of those zero
entries in the connection matrix corresponding to
possible interactions that have not yet been reported
explicitly by neuroanatomists. The grossest possible
perturbation of the data is simply to assume that all
unreported connections exist (Young 1992). We
analysed a matrix derived from coding all unreported
conections as existing, and reflecting the resulting
matrix about its leading diagonal in the manner
described in §24. Figure 6 presents the configuration
that resulted from tied NMDs analysis of this matrix (see
also Young 1992).

The structure in figure 6 is in many respects similar
to that in figure 5. In both structures, the parietal and
IT areas are strongly segregated, with V1 and some of
the prestriate areas between them at the one side, and
STP and area 46 between them at the other. In
quantitative terms, the relation between the two
structures is characterized by 76 9, variance-explained
in the one structure by the other (Young 1992). The
structure in figure 6 implies the same gross organizing
principles as the structure in figure 5. Hence even when
the grossest possible perturbation is applied to the data
set, the conclusions are not disturbed. The solutions are
similar because a large enough number of connections
have been confirmed absent (see Felleman & Van
Essen 1991). The principal differences between figures
5 and 6 lie in the shifts of position of less well-studied
areas, such as VOT and V4t. These areas have their
positions shifted toward the centre of the structure by
their acquisition of a large number of hypothetical new
connections, corresponding to possible connections
that have not yet been explicitly ruled out. It would be
surprising if these structures were in reality to possess
such rich connectivity. Indeed, the positioning of these
structures in the centre of the structure implies that the
distribution of proximities in the connection matrix is
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Figure 6. The structure derived from tied NMDs analysis of a visual system matrix in which all possible connections
that have not been explicitly reported either present or absent have been assumed to exist. The structure still shows
the gross features of figure 5, namely strong segregation between parietal and inferotemporal areas, a dimension
passing between V1, at one extreme, and STP, at the other, and the positioning of area 46 and STP at the confluence
of the two streams. The quantitative relation between this structure and that in figure 5 is characterized by 76 9%,
variance-explained. The principal differences between the two structures is the movement of some less well-studied
areas, such as VOT and V4t, to the centre of the space because they have acquired a large number of hypothetical
new connections. It is most unlikely that these areas really possess this rich connectivity, but the structure represents
an example of the ‘worst case’, in which the data have been perturbed to the maximal possible degree.

very unlikely to reflect the underlying quantitative
distribution of connection strength, for the reasons
discussed in §2g,c: there are too many high and
moderate proximities in this interpolated matrix. It
follows that the assumption that all unreported
connections exist considerably overestimates the real
situation. In any case, the similarity between figures 5
and 6 suggests that the organizational conclusions are
workably robust against changes in status of the
possible connections that have not so far been reported.

The second ‘control’ analysis concerns whether
different organizational principles would emerge from
an untied NMDs analysis. As discussed in §3b, connection
strengths are distributed continuously, with the ex-
ception of absent connections for which there is no
meaningful underlying continuum. We argued that the
tied approach was the appropriate one in the case of
connection data. The tied approach treats proximities
of the same value as members of discrete distributions.
We considered this appropriate because the zero entries
are truly discrete, and there is no basis (other than
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further neuroanatomy) for estimating for non-zero
connection strengths where particular connections lie
in the continuous distribution of strength. However, by
removing the constraint that all tied proximities be
reflected in distances that are as similar as possible,
distances in an untied solution will vary continuously
and this property of the solution will cause it to under-
reflect the segregation between particular points
implied by zero proximities between them. Annular
test data, for example, are represented as more disk-
like than their real configuration in untied solutions.
Hence, an untied solution can provide a lower bound
estimate of the state of the cortical areas, when they are
segregated to the least possible degree. This is an
interesting estimate: if, for example, the parietal and
IT areas are not segregated in such a solution, then
caution would be indicated in concluding that there
are two visual streams: the finding would be dependent
on the discreteness of the distribution of distances in the
tied solution. Accordingly, we undertook an untied
~NMDs analysis of the visual system data.
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Figure 7. The structure derived from untied NMps analysis of the visual system matrix. Untied NMps analysis of
structures with a very similar quantitative distribution of interpoint proximities to that of connection data (see §2¢)
understate the true separation of the points, by allowing points to stray into the centre of the structure. The structure
therefore shows the optimal configuration when NMps is allowed to under-represent the distances between areas.
Nonetheless, note that all the dorsal stream areas are placed toward to top of the structure, that all the ventral stream
areas are placed toward the bottom, that the hierarchical dimension from V1 to STPa and area 46 is present, and
that STPa and areas 46 are again placed at the confluence of the two streams.

Figure 7 shows the untied solution for the visual
system matrix. All the parietal areas are unequivocally
placed in the top half of the structure, while all the I'T
areas are unequivocally placed in the lower half. The
areas of the two streams are joined at the one side by
V1 and the prestriate areas, and at the other by STP
and area 46. Hence, even when violence is done to the
properties of the data in the way described above, the
conclusions about the organization of the system stand.

The third ‘control’ analysis is related to the question
of whether the NMps solution for the visual system data
systematically reflects the data structure of the matrix.
This question arises because where the sTREss of an
NMDs solution is very high (or very low), an annular
structure can emerge in the solution for spurious
reasons. Randomly ordered data, for example, give rise
to very high sTrEss, and to annular configurations in
which the ordering of the points within the annulus is
random. The traditional means of deciding between
the ‘systematic-annularity’ and ‘spurious-annularity’
cases is to compare the sTRESs of a solution with
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analyses of comparable random data, thereby deter-
mining whether the solution is one in which very low
fit could have produced artefact (Stenson & Knoll
1969). Accordingly, we examined the distribution of
SSTRESS statistics from scaling 200 randomly re-ordered
matrices. The probability of the ssTRESss of the solution
in figure 5 falling within the distribution of random
data with very low fit was less than 1073® (Young et al.
1994). We performed an analogous analysis for the
untied solution. The probability of the ssTREss of the
solution in figure 7 falling within the random data
distribution was less than 107'". Hence these analyses
provide no grounds for belief that the NMps solutions for
the visual system data should not be trusted to be a
systematic reflection of data structure.
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5. INDEPENDENT ANALYSES OF THE
CONNECTIONAL ORGANIZATION OF THE
PRIMATE VISUAL SYSTEM

Some aspects of the organization of the visual system
have been, and remain, disputed. These include the
question of whether there are discriminable streams
within the system (Ungerleider & Mishkin 1982;
Goodale & Milner 1993; Merigan & Maunsell 1993;
cf. Martin 1992; Goodhill et al. 1994), whether there is
any reconvergence of processed visual information
(Perrett & Oram 1995; cf. Engel et al. 1991), and
whether the system is a serially ordered hierarchy
(Maunsell & Van Essen 1986; Felleman & Van Essen
1991; Young 1992; cf. Goodhill et al. 1994; Simmen e¢
al. 1994). The results of NMDs analysis of the con-
nectivity of the visual system lend unequivocal support
to one side in each of these disputes. Where there is
dispute it is important to bring multiple methods,
involving different types of analysis and preferably
other types of data, to bear on the various issues. In this
way, opportunities for independent corroboration or
discorroboration of results are provided. In the case of
discorroboration between independent analyses, dis-
pute will doubtlessly continue with the apologists for
opposing views each emphasizing the aspect of the
inconsistent results that supports their position. Should
different analyses corroborate one another, however,
then it is usual scientific practice that the independently
verified finding either be accepted by both parties, or
that an explanation is offered of how several methods
can come independently to the same conclusion if it is
not the correct one. We therefore now turn to
independent analyses of the organization of the visual
system, and the relation that their results bear to the
results of the application of NMDs to the visual system
connection matrix.

(a) Simple statistical properties of the connection
pattern

The simplest means of testing some of these
organizing principles is to employ a y? test to determine
whether the incidence of connections is that expected
under the various hypotheses. One important dispute
concerns whether the visual system is segregated into
streams. Both analysis of the behavioural effects of
cortical lesions (Ungerleider & Mishkin 1982) and
NMDs (Young 1992) (and, to an extent, the physio-
logical evidence; Merigan & Maunsell 1993) suggest
strongly that the system is split into streams. However,
it is sometimes maintained that the system is not
internally segregated into streams (Martin 1992;
Goodhill et al. 1994). These hypotheses are simple to
test decisively. If the system is dichotomized, then the
elements of the dorsal stream should be significantly
more connected with their associates than with the
elements of the ventral stream, and vice versa.
Similarly, there should be significantly more con-
nections that have been confirmed absent between
dorsal and ventral areas than within each of these
groupings. If these comparisons fail to reach signifi-
cance, then the Null hypothesis that the areas are not

Phil. Trans. R. Soc. Lond. B (1995)

MDS and the structure of the primate visual system

segregated could not be rejected. Exactly comparable
analyses can bear on the issue of whether the visual
areas are serially ordered.

We divided all the areas into four sets, which
corresponded to ‘early’, ‘late’, ‘dorsal’ and ‘ventral’
groupings. The ‘early’ set contained V1, V2, V3, VP,
V3A, PIP and V4t; the ‘late’ set contained areas FEF,
46, STPa, STPp, TF and TH; the ‘dorsal’ group
contained MT, MSTD, MSTL, FST, PO, LIP, VIP,
DP and 7a; the ‘ventral’ group contained V4, VOT,
PITD, PITV, CITD, CITV, AITD and AITV.
Turning first to the analysis of demonstrated con-
nections, the dorsal and ventral areas are much more
connected internally than the Null hypothesis predicts
(x* = 17.2, p < 0.00004). Turning to the analysis of
connections that have been demonstrated absent, the
dorsal and ventral areas exchange many fewer con-
nections than the Null hypothesis predicts (y* = 18.6,
p < 0.00002). The hypothesis that the visual areas are
distributed without segregation is rejected. These
results therefore contradict the suggestions of Martin
(1992) and Goodhill et al. (1994) about the organi-
zation of the visual system, and support the findings
from analysis of empirical data (Ungerleider &
Mishkin 1982; Young 1992).

We now address the issue of whether the visual areas
are serially ordered. If this hypothesis is true then areas
at the bottom of the series should be significantly more
connected with their associates than with areas at the
top of the series. Similarly, there should be significantly
more confirmed absent ‘connections’ between early
and late visual areas than within each of these
groupings. If these comparisons were to fail to reach
significance then the Null hypothesis that high and low
areas are not segregated could not be rejected. Early
and late areas are significantly more connected
internally within each group than would be expected
on the Null hypothesis (y* = 9.8, p < 0.002). Further,
early and late areas are significantly less connected
between each other than would be expected on the
Null hypothesis (¥* =10.9, p <0.001). The Null
hypothesis is thus rejected in this analysis also: early
and late visual areas are segregated.

The analyses of the confirmed absent entries in the
connection matrix also illustrate the fact that im-
portant information about the organization of the
system is carried by absent connections, and therefore
that it would be helpful if these absences were more
often reported explicitly.

(b) Procrustes rotation and approximate randomization

A useful means of examining the relations between
the results of different analyses that bear on the same
objects is to employ Procrustes rotation (Schonemann
& Carroll 1970; Gower 1971; Young 1990). In many
cases, the dimensions on which the coordinates of the
points are defined are not themselves meaningful, and
it is the inter-relationships between the points that
represent information about the objects. Here Pro-
crustes rotation can be used to find the reflection,
translation, rotation and scaling of one structure
that fits another structure as well as possible. The
optimal transform is found that minimizes a simple
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sum of squared distances measure between the cor-
responding points of the two compared structures. The
goodness-of-fit of the two structures can be expressed
by the cumulative residual sum of squared distances
between points (r.s.s.), or by a variance-explained
statistic (1-r.s.s, or 7%), as we have preferred (Young
1992; Scannell et al. 1995).

The statistical rarity of each comparison effected by
Procrustes rotation can be assessed by an approximate
randomization test (Edgington 1980; Young 1990).
This process repeats the rotation with one of the two
compared structures shuffled randomly on each of a
large number of iterations. The number of iterations
depends on the amount of computer power available.
In earlier reports we have used only 600 iterations, but
we are now able to perform 10 shuffled rotations. The
number of times that the variance-explained statistic is
exceeded during these randomized iterations is divided
by the number of iterations to yield a probability that
a correspondence as good as the empirical, unshuffled,
comparison could have come about by chance
(Edgington 1980).

(c) Seriation

A non-nMps method, normally used to examine the
chronological order of Archaeological grave site data
(Wilkinson 1971; Laporte & Taillefer 1987), has been
suggested by Simmen ef al. (1994) as a means of
assessing serial ordering in connection data. This
analysis is related to computational methods that
undertake the travelling salesman problem by the
common task of finding the unidimensional ordering of
the elements of a matrix among the n/ possible
orderings that minimizes some measure of distance
between elements. In the case of Archaeological data,
seriation algorithms have often been applied to
incidence matrices, whose columns correspond to
different kinds of objects (e.g. pottery), whose rows
correspond to the graves in which the objects are
found, and whose entries indicate whether a particular
kind of object was found in a particular grave (Laporte
& Taillefer 1987). The algorithm finds the permutation
of the rows which minimizes the cumulative mismatch
between all rows. The row order then specifies the
serial order of the graves. Two types of information can
emerge from the analysis. The optimal serial ordering
of the graves is naturally the principal result, but it is
also possible to derive a measure of departure from
perfect serial ordering by comparing the cumulative
number of mismatches between all rows, the circuit
length, with theoretical minimum and average random
circuit lengths.

In the case of connection data, the task of the
seriation algorithm is again to find the permutation of
the rows and columns with shortest circuit length, the
only major difference being that the connection
matrices are n by n. Just as with grave site data, the row
ordering is the principal goal of the analysis since this
specifies the optimal serial ordering of the cortical
areas. Similarly, the optimal circuit length can be
compared with the theoretical minimum (2z) and
average random circuits to assess departure from
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perfect serial ordering. Unlike Archaeological data,
however, it need not be assumed that there are specific
start and finish points in the sequence, and the ordering
can be circular (Hubert 1974; Simmen et al. 1994). We
implemented a seriation algorithm using simulated
annealing, and applied it to the connectivity matrix for
the visual system (Young et al. 1994).

The shortest circuit length found by the algorithm in
10° trials was 196. Unfortunately, the program found
not one but 60 different orderings at this optimal
length. This particular application of the method
hence suffers from the problem of multiple minima.
The orderings differ in rather minor ways, however,
mainly in a number of pairwise swaps between nearest
neighbours in the orders. Several features were com-
mon to all the optimal length orderings. Parietal and
IT areas were maximally segregated, being joined at
the one side by V1 and the prestriate areas, and at the
other side by area 46 and the parcellations of STP.
Three randomly selected orderings are depicted in
figure 8, in which both the orderings and the city-block
distances between adjacent rows are represented, the
latter being shown as the proportion of the cir-
cumference of the circle defined by the quotient of the
distance between rows and the total circuit length.

We used Procrustes rotation to provide a quan-
titative measure of the relation between the results of
the seriation algorithm and that of NnMps. Comparison
by Procrustes of the arrangement of areas in each of the
60 ordering with the NMDs solution (figure 5) yielded 60
correlation coefficients distributed about a mean of 0.9
with standard deviation 0.006 (every p < 0.000001).
Hence, this seriation method presents a conclusion that
is not only qualitatively similar to that from NMDs
(because the same organizing principles emerge from
it) but is also strongly associated with the NMDs
conclusion at a quantitative, statistically significant
level. The strong relation between the results of these
two independent analyses corroborates the results of
each method. Because the high correlation between
these independently derived results would almost never
be expected by chance, disputation of the organizing
principles that emerge from both analyses should
include an account of how they can both arrive at the
same conclusion if it is not the correct one. In
particular, methodological artefact in one or the other
of the methods does not explain this mutual cor-
roboration (Young et al. 1994; cf. Simmen et al. 1994),
as artefact of precisely the same form would be required
to afflict both radically different methods to bring
about the correspondence in their results.

The second type of information that can emerge
from seriation analysis is an indication of whether the
data are, or are not, serially ordered. This may be
derived by comparing the data’s optimal circuit length
with the theoretical minimum circuit length, and with
the circuit lengths for randomly permuted data
matrices (Wilkinson 1971; Laporte & Taillefer 1987;
Simmen et al. 1994; Young et al. 1994). We turn first to
examining the relation between circuit length and
theoretical minimum tour length for these data. A
useful means of determining this relation for a data set
is to calculate the quotient of the circuit length divided
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Figure 8. Three of the optimal orderings from seration analysis of the visual system matrix. V1 is placed at left in all
diagrams. The distances between labelled vertices are proportional to the City Block distance between the row vectors
of each corresponding area. All the optimal orderings possessed the following features: parietal and inferotemporal
areas were maximally segregated, and these areas were joined at the one side by striate and prestriate visual areas,
and at the other by STP and area 46. The differences between the optimal orderings were minor, and consisted
principally in pairwise swaps between nearest neighbours in the orderings. Areas TF and TH, for example, are

swapped between the top and middle orderings.

by the theoretical minimum circuit length. The smaller
is this quotient, the stronger is the serial ordering. The
optimal circuit length for the visual system data was
196, and their theoretical minimum circuit length was
60. The quotient for these data was therefore 196 /60 =
3.27. It is interesting to compare this quotient with
comparable Archaeological data which are accepted as

Phil. Trans. R. Soc. Lond. B (1995)

exhibiting serial ordering. For example, Archaeological
data reported by Dempsey & Baumbhoff (1963) (» =
26) give a quotient of 4.9, those from Kuzara et al.
(1966) (n = 11) gives 3.86, Hole & Shaw (1967) (n =
57) 3.3, and Stefan (1971) (n = 49) 3.21. The relation
between optimal circuit length and theoretical mini-
mum for the visual system data therefore characterizes
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data that are at least as strongly serially ordered as
many empirical data sets in Archaeology that are
accepted as possessing serial order.

Another comparison of interest is that between the
optimal circuit length and the distribution of circuit
lengths for permuted data (Simmen ef al. 1994; Young
et al. 1994). The values of the mean circuit length for
300 permuted data matrices and the standard de-
viation of the distribution were 420 and 15, re-
spectively. Conventional statistical inference suggests
that actual circuit lengths shorter than 2 standard
deviations of the mean permuted tour length should
cause the Null hypothesis to be rejected at the 0.05
level, compelling the conclusion that serial ordering is
present. According to these values, any tour of length
less than 390 should then compel the conclusion that
serial order is present by this conventional criterion.
The actual value for the visual system data’s optimal
circuit length, 196, is 14.9 standard deviations short of
the permuted data’s mean. This corresponds to a
significance level, assuming a Gaussian distribution of
permuted data circuit lengths, of almost 107°° (Young
et al. 1994).

It is apparent that the visual system connectivity
matrix is certainly serially ordered. However, the
original purpose in suggesting this analysis was to
discriminate between the ‘segregated into streams’ and
‘no segregation’ hypotheses about the organization of
the visual system (Simmen ef al. 1994). The rationale
for this application was that the data should exhibit
strong serial ordering under the former hypothesis, but
not the latter (Simmen et al. 1994). Unfortunately,
circuit length is not a sufficiently sensitive measure to
bear on this issue. Even unsegregated data, in which
points are randomly but uniformly distributed within a
plane can possess short circuit lengths, simply because
efficient unidimensional tours can be found through
the points (see, for example, Mitchison & Durbin
1986). This is the routine application of travelling
salesman algorithms. The original proposal for the use
of this method assumes that a significantly shorter
circuit will be found around the circumference of a ring
than through the middle of the space that the ring
encloses, but it is easy to see that this need not be the
case. Hence even though the data are serially ordered,
this fact does not inform the issue of whether there are
internal streams within the visual system.

(d) Hierarchical analysis

A method for defining a hierarchical arrangement of
a set of cortical areas based on the laminar origins and
terminations of their connections was originated by
Rockland & Pandya (1979). This method has since
been developed by others (Maunsell & Van Essen
1983; Felleman & Van Essen 1991) by describing
further criteria by which cortico-cortical connections
can be classified as ‘ascending’, ‘descending’, and
‘lateral’. Projections classified as ascending originate
in the supragranular or supragranular and infra-
granular layers and terminate predominantly in layer
4 of their target. Lateral projections originate in a
bilaminar pattern from both the supragranular and

Phil. Trans. R. Soc. Lond. B (1995)

infragranular layers and terminate throughout the
thickness of the cortex, in a columnar fashion.
Descending projections originate bilaminarly or in the
infragranular layers and terminate in the superficial
supragranular and/or deep infragranular layers. These
rules for classifying connections, together with data on
the laminar origin and termination of connections, can
be used to define a table of hierarchical constraints. A
hierarchical ladder can then be derived by arranging
the cortical areas among an arbitrary number of levels
in such a way that the hierarchical ordering of the
areas matches the table of hierarchical constraints as
well as possible. Relations between hierarchical ladders
derived in this way with the results of NMDs are
particularly interesting, since this approach involves
not only an independent method but also a completely
different type of data.

We have constructed a numerical model from the
most recently published hierarchical ladder (Felleman
& Van Essen 1991). The model was constructed by
associating an integer value with each visual cortical
area according to its height above V1 in the Felleman
& Van Essen (1991) scheme. We then used Procrustes
rotation to compare this hierarchical model with the
configuration that emerged from NMDs analysis of the
visual system connectivity matrix (Young 1992). The
hierarchical model, which posseses only one dimension,
accounted for 309, of the variability of the two-
dimensional NMDs structure, and this relation was,
according to an approximate randomization test with
10° iterations, statistically significant at p < 0.000001.
These completely independent methods, based on
completely different types of data, therefore concur
about the ordering of cortical stations in the visual
system to a degree that their agreement would almost
never be expected by chance. Using the now familiar
logic, disputation of the conclusions of either NMDs or
hierarchical analysis should explain how such re-
markably close corroboration could come about by
chance or artefact, if not by two independent analyses
of different types of data faithfully reflecting the same
underlying organization.

(e) Analysis of the behavioural effects of cortical
lesions

One of the contended principles of organization of
the visual system has been the proposal, made most
clearly by Ungerleider & Mishkin (1982), that the
system is divided into distinct dorsal and ventral
pathways. The basis for this proposal was the pattern
of behavioural deficits in monkeys which had received
intelligently placed cortical lesions. Damage to the
temporal cortex produces impairment in visual rec-
ognition, whereas damage to the parietal cortex
produces a constellation of visuo-spatial impairments
(Ungerleider & Mishkin 1982). A great deal of
anatomical and physiological work has been under-
taken in the intervening decade, a proportion of which
has been directed specifically at this idea, but it
remains a working hypothesis for very many visual
cortical researchers. One recent development has been
the refinement of the cortical parcellation to which the
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earlier research had access. The task of rendering the
organizational principle described by Ungerleider &
Mishkin (1982) into a numerical model therefore
requires assigning each of the cortical areas of the more
modern parcellation system that informed the nNMDs
analyses, into a group of areas that would be
recognizable to the proponents of this idea. Accord-
ingly, we assigned any area of the parietal cortex, any
area of the caudal superior temporal sulcus, and any
area whose function is largely oculomotor (e.g. FEF) to
the “dorsal’ group. Analogously, we assigned all ventral
areas, including areas of the inferotemporal and
parahippocampal cortices and V4 to the ‘ventral’
group. To capture the common origin of the streams in
occipital cortex, we assigned appropriate areas to the
‘shared’ group (e.g. V1, V2). We assigned the value 1
to all the ventral stream areas, 2 to the shared areas,
and 3 to the dorsal stream areas. Hence, a simple
unidimensional model with only three points captured
the organizational principles taken from the
behavioural effects of cortical lesions.

We then used Procrustes rotation to compare this
model with the NMDs structure derived from analysis of
visual cortical connectivity data (without STPa and
area 46, since the Ungerleider & Mishkin model did
not anticipate reconvergence of their streams in these
structures). The model, despite its simplicity,
accounted for 56 9, of the NMDs structure. Approximate
randomization showed that a correspondence as close
as this would not appear on more than one occasion in
one million by chance (p < 0.000001). Again, there-
fore, independent analyses of different kinds of data
bearing on the organization of the visual system exhibit
mutual corroboration. An account of the visual system
that holds that it is not divided into streams should
therefore account for the fact that multiple inde-
pendent methods corroborate one another in con-
cluding that the system is dichotomized.

The results of all the different methods of analysis
that bear on the organization of the visual system are
summarized in §7.

6. ARE ANY ASPECTS OF CONNECTION
DATA STRUCTURE OBSCURED BY
SPARSITY?

The shape of the manifold in which the cortical areas
are distributed is indicated by the distribution of
quantitative connection strengths (§2¢). This manifold
takes the form of a ring or horseshoe in which the
points representing the cortical areas are placed
optimally by NMbps. The curvature of the structure is a
necessary consequence of the many long distances
implied by the many zero proximities in quantitative
connection data and their qualitative representations
in connection matrices. We have seen that the
curvature that attends sparsity is a reflection of a bona
Jide aspect of data structure, but it is one that sometimes
does not give much information beyond that calculable
from the simple proportion of zero entries in a
connection matrix. The manifolds’ gross shapes, more-
over, do not emphasize the influence of the non-zero
entries, and their curvature can occupy a dimension of
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the solution space. Because humans find it difficult to
apprehend spatial relations in more than three
dimensions, and not all aspects of connection data
structure may be fully represented in the low number
of dimensions that can be apprehended, we have
explored methods of diminishing the effects of sparsity
on the output configurations. Our purpose in pursuing
these methods is to ensure that as many aspects of data
structure as possible, particularly those aspects of data
structure that are carried by non-zero entries, can be
visualized in NmDs solutions. Our general methodology
in this section is to interpolate the zero entries on the
basis of the non-zero ones, to reduce the influence of the
former.

(a) Data conditioning methods

Kendall (1971) described a data conditioning
procedure by which the horseshoe produced by NmDs
analysis of a sparse, low-level matrix (containing
Archaeological data) may be unbent. Many methods
for data conditioning and data transformation have
since been described (Kendall 1975; Gower &
Legendre 1986; Lefkovitch 1991). We have adopted,
modified or been inspired by a number of these
methods which seemed to us particularly suitable. To
explain the nature of the methods we have used, we
consider a sparse matrix M with elements m;;, whose
level of measurement is ordinal and whose number of
distinct levels of proximity is low, which is transformed
into a matrix S with elements s;, whose level of
measurement is also ordinal but whose number of
distinct levels of proximity is higher, and whose
proportion of zero elements is much reduced. We then
describe the transformation that each method per-
forms. The data conditioning methods fall into two
broad classes, the first being concerned with the
similarity or dissimilarity of the pattern of connections
between any two cortical areas, and the second being
concerned with the number of steps that need to be
taken between unconnected cortical areas, to reach the
one area from the other.

(¢) Similarity or dissimilarity of connection pattern

The first data conditioning transform is simply to sum
the absolute differences between any two rows, and to
treat this sum as the new measure of proximity between
the rows. In this case, a new matrix S with elements s;;
is derived

Siy = 2 (Mg —my).

k
We termed this method ‘dsm’, and treated its output
S as ordinal dissimilarity matrices in their subsequent
NMDS analysis.

The further methods in this section were inspired
particularly by the vector dissimilarity technique
described by Lefkovitch (1991). The second method
involves a weighted dissimilarity transform, where the
weighting is related to the total number of non-zero
entries in each comparison:

Sij = [§|(muc_mﬂc)l]/[ZKmik+mﬂc>|]-
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This method was termed ‘wdsml’, and devised to
accord greater dissimilarity to vector comparisons that
contain more zero entries. As with most transforms (see
Kendall 1971), this procedure can be applied repe-
atedly, to derive further higher-order matrices. We
derived a third set of matrices by re-applying this
transform to the wdsm1 matrices, the resulting matrices
being termed ‘wdsm2’.

The fourth method was designed to capture the
similarity between two vectors’ non-zero entries. It did
not regard common zeros as indicative of similarity.
The transform was

if my, >0, and my; > 0, 5,; = X(my, +my,).

k
We designated this method ‘nzsiml’, and by re-
applying the method to the output nzsiml matrices,
derived a fifth set of matrices ‘nzsim2’.

The sixth set of conditioned matrices were derived
by a combined similarity—dissimilarity transform. The
similarity between two vectors was derived by nzsiml,
and the dissimilarity by the dsm procedure. The values
s; in the output matrices were then derived by
subtracting the latter from the former. This set of
matrices were termed ‘simdsm’ matrices.

(it) Path length
The data conditioning methods in this section were

adapted from Kendall’s method of evaluating path-
length (Kendall 1975). Consider the case that

my; = my, = 0.

In this case, d;; and d,,both represent distances above a
threshold where the actual distance is not known. In
order to compare m,with m,, we consider how one
might leapfrog from the ith to the jth object through
intermediate objects by the shortest possible route, and
compare the length of that path with that joining the
kth and the /th object. A concrete example is that of
thresholded distances between cities (see §6¢). Let us
assume that Aberdeen to London and Birmingham to
London possess zero similarity because both distances
are above an arbitrary threshold. We try to resolve the
ambiguity between these large distances by using the
fact that there is a shorter pathlength between
Birmingham and London than between Aberdeen and
London. In the former path, both London and
Birmingham could have non-zero similarity with
Oxford (i.e. pathlength 2 between them), whereas
many more steps would have to be taken to link
Aberdeen and London, indicating that they are farther
apart.

We define the gth order pathlength matrix P with
elements p,” where

1) —_
P = max (m,m,), x=1,2,...,n
and

p® = max (m,m,m,), x=1,2, ..., n

yx

or, more generally, the gth order pathlength matrix is

(@ —
pij = max (mizl mz1x2 mx(q—l)xquqj)’

Xy Kgy ooy X = 1,2, ..., 1.

q
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We examine only the lowest order pathlength cor-
rection for each pair of objects: that is, if a gth order
path exists between objects ¢ and j we do not further
consider paths that involve more than ¢ intermediate
objects.

We assume that if

)
p((I)ij > p(q >
then
Mgy > My
and that if
p(Q)ij > 0’ p(Q)kl =0 and p(q+l)kl > 0’
then
my; > My

We implemented this procedure by defining a matrix
of proximities S with elements s,; such that

_ &8 @) (@
Sy = et ey ey T+ o Fepy

where ¢, is a scaling factor to ensure that latter
condition is satisfied and ¢, ensures that the extra ranks
inserted into the corrected matrix do not overwrite the
ranks that exist in the original data;

that is,

(@ (g+1) -
e A R

and
ey > e by @ Vg, i, J.

We termed the matrices that emerged from the
application of this method ‘pth1’. We defined a second
pathlength transform, in which the criterion by which
we select the best path involves and additive operator
rather than the multiplicative one used in pthl. In this
second general case the gth order pathlength matrix is

(@ —
pi}' = max (mix1+mz1x2+ mz(q—l)xq+quj)’

Xy, Kgy oo Xy =1,2,..0,m,

where exactly comparable scaling factors and assump-
tions as in pthl apply. We termed the matrices from
this method ‘pth2’.

(b) Recovering metric parameters from test data at
the same level of measurement as connection data:
a tournament

We examined quantitatively the performance of the
data conditioning and transformation techniques de-
scribed above. The object of this examination was to
determine optimal NMDs approaches to the many
aspects of structure in neuroanatomical connection
data, and to ensure that the data’s sparsity does not
obscure aspects of data structure that are not carried
by the zero entries. Accordingly, we produced a large
number of arbitrary test structures, and derived several
types of proximity data from them. First we derived
Euclidean distance measures between the vertices of
these structures. Second we lowered the Euclidean
distance measures to the same level of measurement as
neuroanatomical  connection data. For the
‘connection-type’ data, we established two different
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Table 1. This table summarizes the goodness-offit statistics (r.s.q.) from Procrustes rotation in the data conditioning tournament.

(Each of the data transformation routines are enumerated across the top of the table, and ring and disk data structures are listed
at the left. The 0, 1, 2, and 0, 1, 2, 3, 4, 5, 6 rating scale results are indicated separately, as are the tied and untied results for
each type of structure. Each r.s.q. statistic is associated with its standard deviation (across the 50 structures of each type). Each
r.s.q. value may be rendered into a correlation coefficient by taking its square root: for example, the untied wdsm1 analysis
of ring data structures represented by a 0, 1, 2 rating scale gave a r.s.q. of 0.958, and therefore a correlation of 0.98.)

nzsiml nzsim2  wdsml wdsm2 simdsml  simdsm2  untrans pthl pth2
Ring, 0-2
tied mean rsq 0.951 0.549 0.954 0.881 0.947 0.918 0.955 0.954 0935
stdev 0.019 0.142 0.018 0.048 0.019 0.028 0.016 0.015 0.131
untied  means rsq  0.949 0.556 0.958 0.882 0.947 0.916 0.946 0.952 0.952
stdev 0.021 0.141 0.015 0.047 0.019 0.029 0.015 0.017 0.017
Ring, 0-6
tied mean rsq 0.944 0.764 0.945 0.869 0.931 0.871 0.943 0.948 0.949
stdev 0.016 0.083 0.017 0.048 0.022 0.044 0.018 0.022 0.022
untied  mean rsq 0.947 0.765 0.953 0.873 0.931 0.872 0.931 0.949 0.949
stdev 0.016 0.083 0.012 0.045 0.022 0.044 0.024 0.022 0.022
Disk, 0-2
tied mean rsq 0.913 0.446 0.928 0.699 0.861 0.735 0.869 0911 0.8931
stdev 0.054 0.166 0.027 0.155 0.115 0.14 0.106 0.04 0.1334
untied  mean rsq 0.914 0.442 0.933 0.695 0.864 0.737 0.899 0.912 0.9124
stdev 0.047 0.162 0.022 0.159 0.114 0.14 0.062 0.039 0.0392
Disk, 0-6
tied mean rsq 0911 0.626 0.918 0.699 0.843 0.679 0.839 0.904  0.904
stdev 0.046 0.135 0.028 0.142 0.098 0.135 0.158 0.043 0.043
untied  mean rsq 0.901 0.621 0.914 0.691 0.833 0.673 0.871 0.903 0.896
stdev 0.054 0.139 0.046 0.154 0.115 0.139 0.081 0.043 0.043

sets of quantization thresholds by which the Euclidean The test structures that we examined were of three
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distance matrix for each test structure would be
transformed. In the first, the thresholds were placed so
that the degraded matrices contained values of 2, 1 or
0, in the same proportions as those for the primate
visual system data. In the second, we derived matrices
with values 6, 5, 4, 3, 2, 1 and 0.

We then transformed each of the test structures’
degraded matrices by each of the data conditioning
methods described in §6a. The performance of each of
the conditioning methods was tested, as was the
performance of NMDs on the untransformed matrices.
We achieved this by using Procrustes rotation to
compare the NMDs solutions for Euclidean distance data
with the corresponding degraded and degraded-and-
conditioned matrices. Thus, the metric parameters of
each test structure (as represented optimally in two
dimensions), which presumably reflect all aspects of
data structure, were systematically compared with the
optimal solutions for each data conditioning method,
and with unconditioned data at the same level of
measurement as connection data. For example, a single
test structure’s metric solution would be compared
with 18 other structures, namely the tied untrans-
formed structure, the tied dsm, tied wdsml, tied
wdsm2, tied nzsiml, tied nzsim2, tied simdsm, tied
pthl, tied pth2, the untied untransformed structure,
the untied dsm, untied wdsml, untied wdsm2, untied
nzsiml, untied nzsim2, untied simdsm, untied pthl,
and untied pth2 structures. The goodness-of-fit of each
of these structures with the metric structure was
returned by Procrustes rotation and used to assess the
success of each in recovering the data’s metric
paramenters.

Phil. Trans. R. Soc. Lond. B (1995)

types. We investigated a number of regular and
geographical data sets, such as a plane in which 30
points were positioned in a regular hexagonal lattice,
and a data set composed of the road distances between
30 British cities. We created 50 different test con-
figurations in which 30 points were arrayed at random,
but with a rectangular probability distribution, within
a circular planar region. We further created 50
different test configurations in which 30 points were
arrayed at random, with a square probability dis-
tribution, within an annular region of a plane. Both the
disk and ring structures were perturbed by noise
according to the standard treatment by Young (1970)

1
B

dij = I:Z (% + Cije ™ Xjp ejilc) 2] >

k

so that the mean ssTRESS of the tied NMDs analyses of
these structures’ degraded three-point rating scale data
did not differ statistically from that for the ~NmDs
analysis of the visual system data.

Analyses of some of these test structures are irrelevant
to the question of recovery of parameters from cortical
connection data. It is impossible, for example, for
cortical connection data to specify regular grids or
uniformly distributed disk structures because of the
constraints imposed by the quantitative distribution of
connection strengths for cortical data (see §2¢). We
have included these other structures for two reasons.
Firstly, we wished to test some of the generality of the
methods. Secondly, we included disk configurations
because some subcortical brain structures may exhibit
distributions of connection strength that are more
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Figure 9. Examples of output from the successful methods of recovering metric parameters from matrices at the same
level of measurement as connection data. On the left are the metric structures for distance data between 30 U.S. cities,
and a regular hexagonal grid. On the right are the ordinal solutions for matrices derived using data conditioning
method wdsm1. At the top right the positions of the cities are shown to have been recovered almost perfectly. The
fit between the conditioned low level data and the metric data solutions for the cities was 0.99. At the bottom right
is the solution for data treated by wdsm1 from the regular hexagonal grid. The fit between metric and conditioned

data solutions was 0.99.

consistent with their being placed in the central region
of a solution, so that these interpolation methods may
be of value in the future when subcortical structures
are analysed.

Table 1 summarizes the results of the data recovery
tournament for the ring and disk test structures. All the
methods did comparably well in recovering the
structure of the data, except for two of those that
involved repeated application of a transform (e.g.
nzsim2 and wdsm2), and the unsophisticated dis-
similarity transform (dsm). Apart from these poorly
performing methods, the other treatments all recovered
the data’s parameters very well, their recovery typically
being characterized by variance-explained statistics in
the high 90 9, region. The successful methods (nzsim1l,
wdsml, simdsm, untransformed, pthl and pth2) did
not differ significantly in performance, but method
wdsm1 most often recovered the most variability, and
method pthl also performed notably well. Recovery of
the parameters of disk data was slightly worse than
that for the annular structures, but still averaged well
above 90 %, for method wdsm1. Recovery of variability
was slightly but consistently worse for the seven-point
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rating scale data than for the three-point rating scale.
It is interesting to note that more proximity levels do
not guarantee better recovery of the parameters of a
data set (cf. Goodhill et al. 1994).

The ring structures, whose distributions of metric
proximities were very similar to the distribution of
connection strength for quantitative anatomical data
(see §2¢), were very well recovered by NMps analysis.
The average variance-explained statistic (across the 50
ring structures) for tied analysis of untransformed ring
data, data which was at the same level of measurement
and possessed the same proportion of each value in the
rating scale as the visual system matrix, was 96 %,. This
is comparable to the faithfulness of recovery of the
Coombs and Kao configuration by Kruskal’s NMDs
algorithm, a recovery that was presented to dem-
onstrate the basic power of the NMps method (Kruskal
19644). The reported analyses of neuroanatomical
connection data are therefore likely to capture all but
a tiny fraction of the structure inherent in the data (cf.
Simmen et al. 1994), and are well within the envelope
defined by remaining uncertainties about the ex-
perimental data. It is interesting that the untied
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Figure 10. Examples of output from the pthl method of recovering metric parameters from matrices at the same level
of measurement as connection data. On the left are the metric structures for road mileage data between 30 British
cities, and a regular hexagonal grid. On the right are the ordinal solutions for matrices derived using data
conditioning method pthl. At the top right the positions of the cities are shown to have been recovered very well,
despite the fact that the input data were set at the limit case for sparsity in which several cities had only one off-
diagonal non-zero value. The fit between the conditioned low level data and the metric data solutions for the cities
was 0.96. At the bottom right is the solution for data treated by pthl from the regular hexagonal grid. The fit between

metric and conditioned data solutions was perfect.

wdsml analyses were slightly more successful than the
tied untransformed analyses, which are those that we
have previously reported, but it is also interesting that
the wdsm1 analyses were less than 0.3 9, better.

(c) A demonstration of results from the successful
data conditioning methods

We now present some examples of the output from
the most successful methods of recovering metric
parameters from matrices at the same level of measure-
ment as connection matrices (see figures 9 and 10). On
the left of figure 9 are the metric structures for

Phil. Trans. R. Soc. Lond. B (1995)

Euclidean distance data between 30 U.S. cities, and a
regular hexagonal grid. On the right of the figure are
the ordinal solutions for matrices derived by: (i)
degrading the metric data to a three-point rating scale
with the same proportions of Os, 1s and 2s as the visual
system matrix; and (i) conditioning this low level data
by method wdsml. As can be seen at the top of the
figure, the positions of the cities are recovered almost
perfectly. The fit between the conditioned low level
data and the metric data solutions for the cities was
0.99, showing that the wdsml-~nmMDps method recovers:
in practical terms, all aspects of structure in these data.
On the bottom right of the figure is the solution for
data treated by wdsml from the regular hexagonal
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grid. Here the fit between metric and conditioned data
solutions was 0.99.

We noticed that method pthl was particularly
successful in the analysis of matrices with sparsity at or
near the limit case in which objects have only one off-
diagonal non-zero entry. Figure 10 shows the per-
formance of pthl-NMDs in a very sparse case. At the left
of the figure is the metric structure for mileage data
between 30 British cities. At the right of the figure is the
reconstruction of the positions of the cities by pthl-
NMDS from a three-point rating scale matrix of such
sparsity that several cities (e.g. Inverness and Lands
End) have only one ‘connection’ with another city.
Even at the level of sparsity set to the limit case, the
recovery protocol yielded a solution that accounted for
969, of the variability of the metric solution. The
method recovered the regular hexagon perfectly.

These examples illustrate what was shown quan-
titatively in the preceding section: these data con-
ditioning methods are capable of recovering all but a
very small fraction of the metric parameters in a data
set from data at a level of measurement and sparsity
identical to neuroanatomical connection data.

(d) Re-analysis of the visual system data with
successful data conditioning methods

We applied wdsml and pthl to the visual system
matrix. Both these data conditioning treatments are
capable of reliably mitigating the synthetic sparsity
that is introduced by thresholding metric distance
data, as demonstrated in the preceding two sections.
The visual system analyses are presented to ensure that
as few aspects of data structure as possible are obscured
by the data’s genuine sparsity in the small number of
dimensions required. Figure 11 shows the solutions
derived by wdsml and pthl for the visual system, with
the solution at the top being that for wdsml. Both
solutions are remarkably similar, despite the very
different algorithms by which the data were trans-
formed. As can be seen clearly in both configurations,
all the ‘dorsal stream’ areas are concentrated in the
top part of each diagram, while all the ‘ventral stream’
areas are concentrated in the bottom half. The two
streams originate in a number of occipital visual areas,
including V1, which are placed at left, and appear to
reconverge in STP and area 46, which are placed at
the right.

To establish these features of the results with
transformed data quantitatively, we used Procrustes
rotation to compare the transformed-data structures
with the model that explicitly captures the two streams
conception of Ungerleider and Mishkin, with the
untransformed-data structure (see figure 5), and with
each other. The results were that the wdsm] and pthl
structures both share 92 9, of their variability with the
untransformed structure. The wdsm1 and pthl struc-
tures share 939, of their variability with each other.
They are both therefore very similar indeed, and very
similar indeed to the untransformed structure. The two
streams model explained 43 %, of the wdsm1 structure,
and 429, of the pthl structure. The probabilities of
these correspondences coming about by chance, ac-
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Figure 11. Structures derived by submitting the visual system
matrix to (a¢) wdsml and (4) pthl and then to analysis by
untied NMDs. Both solutions are very similar, despite the very
different nature of the algorithms by which the data were
transformed. As can be seen clearly in both configurations,
all the ‘dorsal stream’ areas are concentrated in the top part
of each diagram, while all the ‘ventral stream’ areas are
concentrated in the bottom half. The two streams originate
in a number of occipital visual areas, including V1, which are
placed at left, and appear to reconverge in STP and area 46,
which are placed at the right. Precisely the same conclusions
about the gross organization of the system would be drawn
from these solutions as from the untransformed data analysis.

cording to approximate randomization tests, are all less
than one in a million. Hence, the same conclusions
would be drawn concerning the gross organization of
the system from these solutions as from the untrans-
formed data.

The two solutions, however, suggest that there may
be further division of labour within the two visual
streams. This is particularly apparent for areas in the
dorsal stream, for which there seems to be further
dichotomization which draws areas PO, MSTL and
VIP away from their associates. Similarly, the possible
distinction between V4 and TF and the other ventral
stream areas, which is apparent in the untransformed
tied solution (figure 5), is suggested even more strongly
in these solutions. It is of note that, even when the
effects of sparsity are mitigated or abolished, the
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configurations do not evidence an undifferentiated
distribution of the visual areas, as some have suggested
(Goodhill et al. 1994), but indicate a structure in which
the dorsal and ventral stream areas are clearly
discriminated.

7. HOW IS THE PRIMATE VISUAL SYSTEM
ORGANIZED?

In this section we summarize, point by point, the
results from NMDS analysis of neuroanatomical con-
nection data, from analyses that bear on the reliability
of NMDs analysis of this type of data, and from analyses
which independently bear on the issue of the
organization of the primate cortical visual system and
which can therefore validate the NMps analyses ex-
ternally. We suggest that these facts constitute the
principal explananda in this area, and we attempt to
explain them in §8.

(a) NMDs evidence

1. Tied NMDs analysis of the visual system connection
matrix, which we contend is the most appropriate,
produces a solution of which four aggregate charac-
teristics may be stated: the wvisual areas are
dichotomized into two streams, both streams are serial
hierarchies, the streams reconverge in high order areas,
and neighbouring areas tend to exchange connections
(§84; Young 1992).

2. In the global analysis of almost all cortical station
in the Macaque, all the visual structures appear
together at the left margin of the configuration (Young
1993), but the ventral and dorsal stream areas are
unequivocally segregated, and a hierarchy of visual
areas ascends from VI to the rostral visual areas.
Hence, two distinguishable hierarchically ordered
streams are present in configurations that place all
elements of the visual system on the same side of the
NMDS output space.

3. Untied NMDs analysis, which understates the low
proximity between unconnected structures (§4a), yields
a solution in which dorsal and ventral visual areas are
unequivocally segregated, and in which there is a
hierarchical dimension extending between V1 and
STPa/area 46.

4. NMDs configurations from visual system matrices
that have been transformed by data conditioning
methods that demonstrably abolish the effects of the
data’s sparsity (§6b,c) possess all the gross
organizational features derived from the direct NMDs
analysis (§6d).

(b) Evidence on the reliability of nups analysis of
this type of data

5. The probability that the ssTRESs values for any of
the NMDs analyses fall into the distribution of ssTREss
values for randomized data is vanishingly small (§4a;
Young et al. 1994). Following the traditional reasoning
in this area (Stenson & Knoll 1969), the probability
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that these NMDs analyses do not represent systematic
aspects of data structure in the input matrix is
correspondingly small.

6. The recovery of known parameters from untrans-
formed test data that were as similar as possible to the
visual system data by tied NMDS was characterized by
approximately 96 9, variance-explained (§64).

7. The recovery of known parameters from con-
ditioned test data that were as similar as possible to the
visual system data by NMps was characterized by
approximately 96 9, variance-explained (§64).

(e) Evidence from non-nmps methods

8. The quantitative distribution of connection
strength specifies the manifolds that cortical neural
systems can occupy in a Euclidean space, and the NMDs
solutions lie in these shapes (§2¢ and §4).

9. The quantitative distribution of connection
strength specifically prohibits cortical neural systems
from taking the form of uniformly distributed disk
structures (§2¢).

10. y* analysis of the connections between dorsal
and ventral visual areas show that these groupings are
much more connected within each grouping than
between them (see §5a).

11. Similar analysis shows that striate and im-
mediately prestriate areas and the high-order areas in
the frontal and temporal lobes are much more
connected within each grouping than between them.

12. x* analysis of possible connections that have
been confirmed absent between dorsal and ventral
visual areas show that these groupings are much more
disconnected between each grouping than within them.

13. Similar analysis shows that striate and im-
mediately prestriate areas and high-order areas in the
frontal and temporal lobes are much more discon-
nected between each grouping than within them.

14. Results from seriation analysis show that op-
timal length orderings for the visual system all place
dorsal stream and ventral stream areas maximally far
apart, separated by earlier visual areas at the one side,
and by high-order visual areas at the other (see §5¢).

15. Nmps and seriation, two independent analyses
thus concur on the gross organizational features of the
system. Statistical comparison of the arrangements of
visual areas in the optimal length orderings with that
in the ~mps analysis yields correlations that are
approximately 0.9 (every p < 0.000001). The con-
currence of the results of NMDs and seriation is thus not
to be expected by chance.

16. Although the visual system matrix is/certainly
serially ordered, tour length is too blunt an analytical
tool to tell disk structures apart from annuli (see §5¢).

17. Hierarchical analysis of laminar origin and
termination data constructs a largely self-consistent
unidimensional hierarchy, in which the relative hi-
erarchical level of particular structures can be made
apparent (Felleman & Van Essen 1991).

18. Statistical comparison of the ordering of stations
that emerges from hierarchical analysis shows that this
ordering is statistically significantly related to the
positions taken by the stations in the NMDs structure (p
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< 0.000001). Two independent analyses of different
types of anatomical data thus concur that: (i) the
visual system is hierarchically organized; and (ii)
about the approximate ordering of stations in the
hierarchy, and do so to a degree that is not to be
expected by chance.

19. Analysis of the behavioural effects of cortical
lesions indicates that the visual system is dichotomized
into a dorsal and a ventral pathway (Ungerleider &
Mishkin 1982).

20. The organizational principles of the visual
system that emerge from analysis of the behavioural
effects of lesions can be captured in a simple numerical
model. Statistical comparison of the ordering of cortical
areas into the dorsal, ventral and shared groups in this
model shows that this ordering is statistically
significantly related to the positions taken by the areas
in the NMDs structure (p < 0.000001). Two independent
analyses of different types of anatomical data thus
concur that: (i) the visual system is dichotomized ; and
(ii) about the classification of particular stations in the
dichotomized system, and do so to a degree that is not
to be expected by chance.

8. DISCUSSION

We have presented a detailed treatment of the
application of NMDs to neuroanatomical connection
data, and have explored the degree to which the results
may be reliable. In the preceding section we
enumerated the principal explananda in this area. We
now discuss frameworks for explaining the results. We
believe that all these results can be explained in a very
economic manner. We suppose that Numps, and y?
analysis of the connections and non-connections,
seriation, hierarchical analysis and the analysis of the
behavioural effects of cortical lesions have faithfully
extracted underlying aspects of the structure from their
particular types of data. These different methods
variously and quantitatively agree that the system is
divided into distinct streams of processing, each of
which is hierarchically organized and which recon-
verge at multiple sites in the frontal and temporal
lobes.

We note that alternative explanatory frameworks
(Martin 1992; Goodhill et al. 1994; Simmen ef al. 1994)
fail to explain the majority of these results. It has been
argued, for example, that parallel processing ‘can
reasonably be claimed in only one instance —in the
topographic maps that repeat themselves again and
again throughout the visual pathways’ on the basis
that the M and P pathways mix in V1 and V4, and
that there is a non-striate pathway into MT (Martin
1992). This model would require that the dicho-
tomization evident in results 1, 2, 3, 4, 10, 12, 14 and
19 (see §7) arose spuriously, and would have difficulty
explaining results 5, 6, 7 and 8 which suggest that the
NMDs  configurations did not arise spuriously. In
addition, this model does not explain how four
independent methods concur that there is parallel
processing, specifically within two gross subsystems of
visual cortex, as in results 10, 12, 14, 15, 18 and 20.
NMDs, %, seriation and analysis of the behavioural
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effects of cortical lesions all agree that the system is
dichotomized. Chance is an unlikely explanation of
the agreement between the NMDs, seriation and lesion
results (results 15, 18 and 20). It is vanishingly unlikely
that artefact caused the agreement between these
different methods, since the same artefact would have
had to have afflicted such radically different analytical
methods. This model appears, then, to require some
further explication if it is to account for the facts.

Another alternative framework has recently been
articulated (Goodhill et al. 1994; Simmen ¢t al. 1994).
In this model, it is suggested that  the visual areas have
an underlying abstract connectivity structure in which
they are positioned throughout a circular region,
reflecting little organization into streams’ (Goodhill ez
al. 1994). This model is specifically excluded by the
constraints of the quantitative distribution of con-
nection strength (result 9), and is refuted by results 10
and 12. The model cannot then be true. Results 1, 2,
3 and 4, must have arisen spuriously in this model,
despite the support of results 5, 6, 7 and 8. Results 14,
15, 19 and 20 are very difficult to explain within this
framework, and as far as we know the authors of this
model have made no attempt to explain the quan-
titative concordance in the results of all the inde-
pendent methods.

In support of their views, however, Goodhill et al.
(1994) have endeavoured to show that NMps would
artefactually find annular structure even if the true
data structure were disk-like. To do this they binarized
(Simmen et al. 1994) and quantized (Goodhill et al.
1994) the metric distances between points distributed
within a disk. They showed that with 2s, ls and Os in
the same proportion as the visual system data, NMDs
reconstructed an unmistakeably annular con-
figuration. In this way they hoped to specify a
mechanism by which the divergence of the visual
system into the distinct dorsal and ventral pathways
evident in the NMps structure (result 1) could come
about artefactually: this organization could be
explained by an annular bias in NMpDs spuriously
segregating the visual areas to different sides of the
~NMDs output space (Goodhill et al. 1994; Simmen et al.
1994).

We note first that disk structures cannot be specified
by cortical connection data because of the constraints
embodied by the quantitative distribution of con-
nection strength (result 9 and §2¢). Even taken at face
value therefore, the finding of annularity from
quantized disk data is irrelevant to the interpretation
of the nMDs solution for the visual system, since disk
data structure cannot arise in cortical connection data.
We note secondly that this annular effect would, in any
case, not explain result 2, that even when the visual
areas are placed at the same side of the output space,
the gross division of the system is still apparent. Neither
would an annular bias explain how the system is still
clearly divided into a dorsal and ventral stream when
the annularity that arises from sparsity is abolished
(result 4, §6¢,d).

We note thirdly that the annular bias does not in fact
arise from NMbDs itself, as suggested by Goodhill et al.
(1994), but from their quantization procedure and
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their misapplication of the tied approach in this case.
Their quantization process transforms all distances
above an arbitrary value into zeros, distances below
this value but above another arbitrary quantization
threshold into ones, and distances below this threshold
into twos. The zeros in the quantized matrices
correspond to a range of distances above an arbitrary
threshold. In the case of this type of data, the
comparison of the configuration derived from analysing
the ternary data with the metric structure shows the
degree to which NMDS can reconstruct the range of
distances corresponding to each zero (or one or two).
The appropriate NMDS approach in this circumstance is
to allow tied similarities to untie. There is no special
property of any of the zero entries — unlike connection
data — that specifies that they should all be the same
length, indeed the reverse is plainly the case. However,
Goodhill ¢t al. (1994) used the tied approach with these
data. In tied nMps, the algorithm finds a solution in
which all the distances signalled by the same proximity
value are as similar to each other as possible. Because
zero proximitites signal the larger distances, they are
emphasized in the optimization over the smaller
distances implied by the non-zero proximities.
Distances in the solution corresponding to non-zero
proximities thus become more variable than distances
corresponding to zero proximities. The result is that
the solution is one in which the frequency distribution
of distances possesses a peak for long distances, and a
smoother and lower distribution of shorter distances.
We demonstrated in §2¢ that rings or horseshoes have
proximity distributions with this shape. This process
for turning disks into rings requires at least two
properties that connection data do not possess. First,
the initial data structure must be that of a disk.
Cortical connection data cannot possess this data
structure (§2a,¢). Second, the zero proximities in the
connection matrix must correspond to a range of
distances. Unless one absent connection can reasonably
be said to be more or less absent than another absent
connection, there is no range of proximities underlying
the zero proximities in connection data. Hence, the
particular suggestion from these colleagues (Goodhill e
al. 1994; Simmen et al. 1994) is not a candidate
mechanism for the etiology for the annularity or
curvature of NMDs structures for cortical neural systems,
and they present no evidence that these NMDs structures
are corrupted by artefact. Their test data are funda-
mentally unlike real connection data. Their comments
reflect, we believe, an understandable concern about
the ubiquitous curvature of NMDs analyses of cortical
connection data. It is not, however, a matter of opinion
that this curvature arises as an inevitable consequence
of bona fide aspects of data structure, and that the
particular problem exhibited by Simmen ef al. (1994)
and Goodhill ¢t al. (1994) does not apply to analysis of
connection data.

These considerations, and those summarized in §7,
reflect the fact that the evaluation of the gross
organization of central neural systems has entered the
area of quantitative biology. The success of a particular
proposition now turns on its ability to account for
quantitative facts, rather than on its intuitive appeal,

Phil. Trans. R. Soc. Lond. B (1995)

MDS and the structure of the primate visual system

or the tradition from which it arises. The three
propositions that the visual system is hierarchically
organized, divided into gross strcams and that it
provides opportunities for processed visual signals to
reconverge, account for results from five independent
methods of analysis of three different types of neuro-
biological data that bear on the organization of the
system. We have also shown by simulation that one of
these independent methods of analysis, NMDs, reliably
recovers the patterns underlying test data that were
as similar as possible to connection data. The mutual
corroboration between multiple independent methods
and our demonstration of the reliability of NMDs in
this application suggest that these three organizing
principles are presently as well supported as any set
of conclusions in quantitative biology. We believe that
these results imply that the features of the primate
cortical visual system are approximated closely and
clearly in the structures derived from NMpDs analysis of
the system’s connection data, and we look forward to
further experimental tests of the insights on this and
other cortical systems that emerge from considering
these structures.
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